434 research outputs found

    Close encounters of the cell kind: The impact of contact inhibition on tumour growth and cancer models

    Get PDF
    Cancer is a complex phenomenon, and the sheer variation in behaviour across different types renders it difficult to ascertain underlying biological mechanisms. Experimental approaches frequently yield conflicting results for myriad reasons, and mathematical modelling of cancer is a vital tool to explore what we cannot readily measure, and ultimately improve treatment and prognosis. Like experiments, models are underpinned by certain biological assumptions, variation of which can lead to divergent predictions. An outstanding and important question concerns contact inhibition of proliferation (CIP), the observation that proliferation ceases when cells are spatially confined by their neighbours. CIP is a characteristic of many healthy adult tissues, but it remains unclear to which extent it holds in solid tumours, which exhibit regions of hyper-proliferation, and apparent breakdown of CIP. What precisely occurs in tumour tissue remains an open question, which mathematical modelling can help shed light on. In this perspective piece, we explore the implications of different hypotheses and available experimental evidence to elucidate the implications of these scenarios. We also outline how erroneous conclusions about the nature of tumour growth may be arrived at by looking selectively at biological data in isolation, and how this might be circumvented

    Multiscale modelling of intestinal crypt organization and carcinogenesis

    Get PDF
    Colorectal cancers are the third most common type of cancer. They originate from intestinal crypts, glands that descend from the intestinal lumen into the underlying connective tissue. Normal crypts are thought to exist in a dynamic equilibrium where the rate of cell production at the base of a crypt is matched by that of loss at the top. Understanding how genetic alterations accumulate and proceed to disrupt this dynamic equilibrium is fundamental to understanding the origins of colorectal cancer. Colorectal cancer emerges from the interaction of biological processes that span several spatial scales, from mutations that cause inappropriate intracellular responses to changes at the cell/tissue level, such as uncontrolled proliferation and altered motility and adhesion. Multiscale mathematical modelling can provide insight into the spatiotemporal organisation of such a complex, highly regulated and dynamic system. Moreover, the aforementioned challenges are inherent to the multiscale modelling of biological tissue more generally. In this review we describe the mathematical approaches that have been applied to investigate multiscale aspects of crypt behavior, highlighting a number of model predictions that have since been validated experimentally. We also discuss some of the key mathematical and computational challenges associated with the multiscale modelling approach. We conclude by discussing recent efforts to derive coarse-grained descriptions of such models, which may offer one way of reducing the computational cost of simulation by leveraging well-established tools of mathematical analysis to address key problems in multiscale modelling

    Numerical Analysis of the Immersed Boundary Method for Cell-Based Simulation

    Get PDF
    Mathematical modelling provides a useful framework within which to investigate the organization of biological tissues. With advances in experimental biology leading to increasingly detailed descriptions of cellular behavior, models that consider cells as individual objects are becoming a common tool to study how processes at the single-cell level affect collective dynamics and determine tissue size, shape, and function. However, there often remains no comprehensive account of these models, their method of solution, computational implementation, or analysis of parameter scaling, hindering our ability to utilize and accurately compare different models. Here we present an efficient, open-source implementation of the immersed boundary (IB) method, tailored to simulate the dynamics of cell populations. This approach considers the dynamics of elastic membranes, representing cell boundaries, immersed in a viscous Newtonian fluid. The IB method enables complex and emergent cell shape dynamics, spatially heterogeneous cell properties, and precise control of growth mechanisms. We solve the model numerically using an established algorithm, based on the fast Fourier transform, providing full details of all technical aspects of our implementation. The implementation is undertaken within Chaste, an open-source C++ library that allows one to easily change constitutive assumptions. Our implementation scales linearly with time step, and subquadratically with mesh spacing and immersed boundary node spacing. We identify the relationship between the immersed boundary node spacing and fluid mesh spacing required to ensure fluid volume conservation within immersed boundaries, and the scaling of cell membrane stiffness and cell-cell interaction strength required when refining the immersed boundary discretization. Finally, we present a simulation study of a growing epithelial tissue to demonstrate the applicability of our implementation to relevant biological questions, highlighting several features of the IB method that make it well suited to address certain questions in epithelial morphogenesis

    Impact of implementation choices on quantitative predictions of cell-based computational models

    Get PDF
    ‘Cell-based’ models provide a powerful computational tool for studying the mechanisms underlying the growth and dynamics of biological tissues in health and disease. An increasing amount of quantitative data with cellular resolution has paved the way for the quantitative parameterisation and validation of such models. However, the numerical implementation of cell-based models remains challenging, and little work has been done to understand to what extent implementation choices may influence model predictions. Here, we consider the numerical implementation of a popular class of cell-based models called vertex models, which are often used to study epithelial tissues. In two-dimensional vertex models, a tissue is approximated as a tessellation of polygons and the vertices of these polygons move due to mechanical forces originating from the cells. Such models have been used extensively to study the mechanical regulation of tissue topology in the literature. Here, we analyse how the model predictions may be affected by numerical parameters, such as the size of the time step, and non-physical model parameters, such as length thresholds for cell rearrangement. We find that vertex positions and summary statistics are sensitive to several of these implementation parameters. For example, the predicted tissue size decreases with decreasing cell cycle durations, and cell rearrangement may be suppressed by large time steps. These findings are counter-intuitive and illustrate that model predictions need to be thoroughly analysed and implementation details carefully considered when applying cell-based computational models in a quantitative setting

    Of mitogens and morphogens : modelling Sonic Hedgehog mechanisms in vertebrate development

    Get PDF
    Sonic Hedgehog (Shh) Is a critical protein in vertebrate development, orchestrating patterning and growth in many developing systems. First described as a classic morphogen that patterns tissues through a spatial concentration gradient, subsequent studies have revealed a more complex mechanism, in which Shh can also regulate proliferation and differentiation. While the mechanism of action of Shh as a morphogen is well understood, it remains less clear how Shh might integrate patterning, proliferation and differentiation in a given tissue, to ultimately direct its morphogenesis. In tandem with experimental studies, mathematical modelling can help gain mechanistic insights into these processes and bridge the gap between Shh-regulated patterning and growth, by integrating these processes into a common theoretical framework. Here, we briefly review the roles of Shh in vertebrate development, focusing on its functions as a morphogen, mitogen and regulator of differentiation. We then discuss the contributions that modelling has made to our understanding of the action of Shh and highlight current challenges in using mathematical models in a quantitative and predictive way

    Migration and horizontal gene transfer divide microbial genomes into multiple niches.

    Get PDF
    Horizontal gene transfer is central to microbial evolution, because it enables genetic regions to spread horizontally through diverse communities. However, how gene transfer exerts such a strong effect is not understood. Here we develop an eco-evolutionary model and show how genetic transfer, even when rare, can transform the evolution and ecology of microbes. We recapitulate existing models, which suggest that asexual reproduction will overpower horizontal transfer and greatly limit its effects. We then show that allowing immigration completely changes these predictions. With migration, the rates and impacts of horizontal transfer are greatly increased, and transfer is most frequent for loci under positive natural selection. Our analysis explains how ecologically important loci can sweep through competing strains and species. In this way, microbial genomes can evolve to become ecologically diverse where different genomic regions encode for partially overlapping, but distinct, ecologies. Under these conditions ecological species do not exist, because genes, not species, inhabit niches

    Bayesian inference of agent-based models: a tool for studying kidney branching morphogenesis

    Get PDF
    The adult mammalian kidney has a complex, highly-branched collecting duct epithelium that arises as a ureteric bud sidebranch from an epithelial tube known as the nephric duct. Subsequent branching of the ureteric bud to form the collecting duct tree is regulated by subcellular interactions between the epithelium and a population of mesenchymal cells that surround the tips of outgrowing branches. The mesenchymal cells produce glial cell-line derived neurotrophic factor (GDNF), that binds with RET receptors on the surface of the epithelial cells to stimulate several subcellular pathways in the epithelium. Such interactions are known to be a prerequisite for normal branching development, although competing theories exist for their role in morphogenesis. Here we introduce the first agent-based model of ex vivo kidney uretic branching. Through comparison with experimental data, we show that growth factor-regulated growth mechanisms can explain early epithelial cell branching, but only if epithelial cell division depends in a switch-like way on the local growth factor concentration; cell division occurring only if the driving growth factor level exceeds a threshold. We also show how a recently-developed method, "Approximate Approximate Bayesian Computation", can be used to infer key model parameters, and reveal the dependency between the parameters controlling a growth factor-dependent growth switch. These results are consistent with a requirement for signals controlling proliferation and chemotaxis, both of which are previously identified roles for GDNF

    High-Energy Aspects of Solar Flares: Overview of the Volume

    Full text link
    In this introductory chapter, we provide a brief summary of the successes and remaining challenges in understanding the solar flare phenomenon and its attendant implications for particle acceleration mechanisms in astrophysical plasmas. We also provide a brief overview of the contents of the other chapters in this volume, with particular reference to the well-observed flare of 2002 July 23Comment: This is the introductory article for a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011

    Coupled differentiation and division of embryonic stem cells inferred from clonal snapshots

    Get PDF
    The deluge of single-cell data obtained by sequencing, imaging and epigenetic markers has led to an increasingly detailed description of cell state. However, it remains challenging to identify how cells transition between different states, in part because data are typically limited to snapshots in time. A prerequisite for inferring cell state transitions from such snapshots is to distinguish whether transitions are coupled to cell divisions. To address this, we present two minimal branching process models of cell division and differentiation in a well-mixed population. These models describe dynamics where differentiation and division are coupled or uncoupled. For each model, we derive analytic expressions for each subpopulation's mean and variance and for the likelihood, allowing exact Bayesian parameter inference and model selection in the idealised case of fully observed trajectories of differentiation and division events. In the case of snapshots, we present a sample path algorithm and use this to predict optimal temporal spacing of measurements for experimental design. We then apply this methodology to an \textit{in vitro} dataset assaying the clonal growth of epiblast stem cells in culture conditions promoting self-renewal or differentiation. Here, the larger number of cell states necessitates approximate Bayesian computation. For both culture conditions, our inference supports the model where cell state transitions are coupled to division. For culture conditions promoting differentiation, our analysis indicates a possible shift in dynamics, with these processes becoming more coupled over time

    Imaging Spectroscopy of a White-Light Solar Flare

    Get PDF
    We report observations of a white-light solar flare (SOL2010-06-12T00:57, M2.0) observed by the Helioseismic Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO) and the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). The HMI data give us the first space-based high-resolution imaging spectroscopy of a white-light flare, including continuum, Doppler, and magnetic signatures for the photospheric FeI line at 6173.34{\AA} and its neighboring continuum. In the impulsive phase of the flare, a bright white-light kernel appears in each of the two magnetic footpoints. When the flare occurred, the spectral coverage of the HMI filtergrams (six equidistant samples spanning \pm172m{\AA} around nominal line center) encompassed the line core and the blue continuum sufficiently far from the core to eliminate significant Doppler crosstalk in the latter, which is otherwise a possibility for the extreme conditions in a white-light flare. RHESSI obtained complete hard X-ray and \Upsilon-ray spectra (this was the first \Upsilon-ray flare of Cycle 24). The FeI line appears to be shifted to the blue during the flare but does not go into emission; the contrast is nearly constant across the line profile. We did not detect a seismic wave from this event. The HMI data suggest stepwise changes of the line-of-sight magnetic field in the white-light footpoints.Comment: 14 pages, 7 figures, Accepted by Solar Physic
    corecore